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THEORETICAL STUDY OF ORBITAL ELEMENT CONTROL WITH 

POTENTIAL APPLIICATIONS TO MANNED SPACE MISSIONS 

By James C .  Howard 

Ames Research Center 
Moffett Field,  C a l i f .  

To f a c i l i t a t e  the  modification of es tabl ished lunar  or planetary o r b i t s ,  a 
simple method has been developed for determining the  impulsive ve loc i ty  incre-  
ments required t o  make prescribed changes i n  the o r b i t a l  elements. The d i r e c t  
determination of the ve loc i ty  increments required t o  make prescribed changes i n  
the elements of planetary o r b i t s  proceeds from a knowledge of the time r a t e s  of 
change of the o r b i t a l  elements i n  the presence of perturbing forces .  The s i m -  
p l i f i c a t i o n  inherent i n  the present method involves the  replacement of a s e t  of 
d i f f e r e n t i a l  equations r e l a t i n g  the time r a t e s  of change of the o r b i t a l  e l e -  
ments t o  the components of the perturbing force by a s e t  of ordinary equations 
r e l a t i n g  the o r b i t a l  element increments t o  the components of the impulse vector.  
These equations a re  then solved by conventional methods t o  obtain the impulse 
vector required t o  make prescribed changes i n  the o r b i t a l  elements. T h i s  pro- 
cedure necessi ta tes  the omission of second and higher order quant i t ies .  How- 
ever, a 7090 d i g i t a l  computer program has been used t o  compute the e r r o r s  
involved, and the r e s u l t s  obtained indicate  t h a t  the e r r o r s  a r e  well within 
acceptable l i m i t s  f o r  the type of maneuvers contemplated. The equations have 
been mechanized on the 7090 d i g i t a l  computer and used t o  compute the  impulsive 
veloci ty  increments required t o  make independent changes i n  the o r b i t a l  e l e -  
ments of a v a r i e t y  of e a r t h  and lunar o r b i t s .  
ments required t o  produce o r b i t a l  element changes of the type required t o  
execute lunar  reconnaissance maneuvers have been computed and the r e s u l t s  pre- 
sented i n  graphical and tabular  form. Specif ical ly ,  the ve loc i ty  increments 
required t o  modify a lunar o r b i t  with a semimajor ax is  of 1,400 s t a t u t e  miles 
and an e c c e n t r i c i t y  of 0.2 have been computed. Such an o r b i t  would be of value 
i f  the object  of a reconnaissance mission were t o  observe the lunar  surface i n  
the v i c i n i t y  of perilune.  Because the  use of high e c c e n t r i c i t y  o r b i t s  can 
grea t ly  reduce the ve loc i ty  increments required t o  produce prescribed changes 
i n  o r b i t  plane or ientat ion,  a lunar  o r b i t  with a semimajor ax is  of 2,200 s ta t -  
ute  miles and an e c c e n t r i c i t y  of 0.5 has been used t o  f u r t h e r  i l l u s t r a t e  the  
method. It i s  assumed t h a t  such o r b i t s  would be establ ished by successive 
appl icat ions of the method described i n  t h i s  report .  

I n  addition, the ve loc i ty  incre- 

INTRODUCTION 

Considerable research by Ames Research Center and other  research groups 
has been directed towards reducing the complexity of guidance and control  



systems f o r  manned space missions. References 1 and 2, f o r  example, present 
results which describe some r e l a t i v e l y  simple navigation and guidance systems 
t h a t  have appl icat ion t o  the midcourse re turn  phase and the e a r t h  reentry phase 
of a manned lunar  mission. A s  p a r t  of a continuing e f f o r t  i n  t h i s  direction, 
an ana ly t ica l  study was undertaken t o  determine the p o s s i b i l i t y  of devising 
simple methods of computing the impulsive-thrust-vector requirements f o r  pro- 
ducing prescribed changes i n  the elements of an o r b i t i n g  space vehicle.  I n  
order t o  determine the impulses required t o  change the  s i z e  and shape of estab- 
l i s h e d  o r b i t s  by the methods described i n  t h i s  report ,  it i s  necessary t o  know 
the semimajor axis ,  the eccent r ic i ty ,  and the t r u e  anomaly i n  the establ ished 
o r b i t .  I n  the case of e a r t h  o r b i t s ,  the necessary o r b i t a l  element data  can be 
obtained from ground t racking s t a t i o n s .  However, i n  the case of ex t ra te r res -  
t r i a l  missions, other  back-up methods may be desirable .  One method by which 
the semimajor ax is  and the e c c e n t r i c i t y  can be obtained i s  from a s e r i e s  of 
range determinations by the use of the para l lax  method. The determination of 
range by t h i s  method requires  a knowledge of the radius of the t a r g e t  body and 
the angle subtended a t  the vehicle by t h i s  radius .  Before t rue  anomaly can be 
determined it i s  necessary t o  e s t a b l i s h  the pos i t ion  and d i rec t ion  of the l i n e  
of apsides. However, discussion of the various methods of determining the 
o r b i t  from an orb i t ing  space vehicle i s  considered outside the scope of the 
present report ,  where i t  i s  assumed t h a t  the required o r b i t a l  element data a re  
avai lable .  This study was motivated, . in par t ,  by the poten t ia l  appl icat ion of 
s implif ied computational procedures t o  space missions where f a i r l y  precise con- 
t r o l  of the o r b i t a l  elements i s  desired, f o r  example, lunar  or  planetary recon- 
naissance missions, the shaping of parking o r b i t s  p r i o r  t o  in jec t ion  i n t o  lunar  
or  interplanetary t r a j e c t o r i e s ,  and the removal of the secular  changes produced 
by the perturbations of the p l a n e t ' s  g rav i ta t iona l  f i e l d  ( r e f .  3 ) .  The present 
report  has two main objectives:  

(1) To describe a simple computational procedure f o r  determining the 
impulsive ve loc i ty  increments required t o  produce prescribed 
changes i n  the o r b i t a l  elements of a space vehicle  

(2) To i l l u s t r a t e  the poten t ia l  appl icat ion of t h i s  procedure t o  a 
lunar  reconnaissance mission where prescribed o r b i t a l  element 
changes may be made with r e l a t i v e l y  simple on-board computations. 

SYMBOLS 

a semimajor axis ,  s t a t u t e  miles 

a i j  matrix element i n  the i t h  row and the j t h  column 

C i j  matrix element i n  the i t h  row and the j t h  column 

e o r b i t  e c c e n t r i c i t y  

normal component of force Fh 

-2 I 
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radial component of force 

transverse componeot of force 

universal  constant of gravi ta t ion 

angular momentum per u n i t  mass 

u n i t  vector i n  the pos i t ive  d i rec t ion  of the  angular momentum vec- 
h t o r ,  - 
h 

o r b i t  plane inc l ina t ion  

a t r i a d  of i n e r t i a l l y  f ixed,  mutually orthogonal u n i t  vectors 
( f i g .  20) 

components of an impulse vector 

impulse required t o  make a prescribed change i n  the semimajor ax is  

impulse required t o  make prescribed changes i n  the semimajor ax is  
and the e c c e n t r i c i t y  

impulse required t o  make a prescribed change i n  the e c c e n t r i c i t y  

normal component of the impulse vector 

normal impulse required t o  make a prescribed change i n  the o r b i t  
plane inc l ina t ion  

r a d i a l  component of the impulse vector 

transverse component of the impulse vector 

r a d i a l  impulse required t o  make prescribed changes i n  the argument 
of perifocus 

r a d i a l  impulse required t o  n u l l  the changes induced i n  the argument 
of perifocus by Ia 

r a d i a l  impulse required t o  n u l l  the changes induced i n  the argulnent 
of perifocus by Iae  

r a d i a l  impulse required t o  n u l l  the changes induced i n  the argument 
of perifocus by 1, 

normal impulse required t o  make a prescribed change i n  the longitude 
of the  ascending node 

semilatus rectum, a(1 - e2) 
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mass of space vehicle 

mass of t h e  c e n t r a l  body 

p r t u r b i n g  force vector 

pos i t ion  vector  of vehicle i n  i t s  o r b i t  

r u n i t  vector i n  the posi t ive d i rec t ion  of the  pos i t ion  vector, ; 

t h r u s t  ve c t o r  

- 

t rue  anomaly 

t h r u s t  d i rec t ion  measured from the l o c a l  tangent t o  the f l i g h t  path 

d i rec t ion  of 

d i rec t ion  of I,, 

Ia as measured from the l o c a l  tangent t o  the f l i g h t  path 

as measured from the l o c a l  tangent t o  the f l i g h t  path 

d i rec t ion  of I e  as measured from the l o c a l  tangent t o  the f l i g h t  path 

d i rec t ion  of 1, as measured from the l o c a l  horizontal  

d i rec t ion  of I,, as measured from the l o c a l  horizontal  

d i rec t ion  of 1, as measured from the l o c a l  horizontal  

increment of  the associated var iable  

changes i n  the argument of perifocus associated with prescribed changes 
i n  the semimajor ax is  

changes i n  the argument of perifocus associated with prescribed changes 
i n  the semimajor ax is  and the  e c c e n t r i c i t y  

changes i n  the argument of perifocus associated with prescribed changes 
i n  the o r b i t  e c c e n t r i c i t y  

2 X 2 determinant 

argument of l a t i t u d e ,  w + v 

uni t  vector i n  the d i rec t ion  of increasing anomaly 

dynamical constant of gravi ta t ion,  G(M + m) 

e x t r a t e r r e s t r i a l  g rav i ta t iona l  po ten t ia l  function 

gravi ta t iona l  po ten t ia l  function f o r  an oblate planet  
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argument of perifocus as measured from the  ascending node l i n e  

argument of perifocus,  w + R 

longitude of ascending node l i n e  

un i t  vector  i n  the d i r ec t ion  of the ascending node l i n e  

gradient  of t he  g rav i t a t iona l  po ten t i a l  funct ion 

degrees of a r c  

inverse of a matrix 

transpose of a matrix 

Subscripts 

1,2,3 components of subscr ipted impulse 

a,e,ae o r b i t a l  element changes r e su l t i ng  i n  changes i n  the subscr ipted 
var iable  

o r b i t a l  element t o  be changed by the  subscripted impulse i , R , w  

e t  represents  t he  e f f e c t s  of e x t r a t e r r e s t r i a l  g rav i t a t ion  of subscripted 
po ten t i a l  funct ion 

i, 3 row and colwnn, respect ively,  t o  which subscripted matrix element 
belongs 

ob represents the e f f e c t s  of oblateness of subscr ipted po ten t i a l  
funct ion 

r ,@,h  r ad ia l ,  transverse,  and normal components, respect ively,  of the 
subscripted var iab le  

o r b i t a l  element t o  be changed by the  impulse subscr ipted by a wa 

wae o r b i t a l  element t o  be changed by the  impulse subscr ipted by ae 

o r b i t a l  element t o  be changed by the  impulse subscr ipted by e we 
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ANATJYSIS 

The influence of t h r u s t  and g rav i t a t iona l  forces  on the elements t h a t  
determine the  s i ze ,  shape, and o r i en ta t ion  of the  o r b i t  of a space vehicle may 
be determined by the  use of Lagrange's planetary equations. The f i v e  elements 
t h a t  determine the  s i ze ,  shape, and o r i en ta t ion  of a s a t e l l i t e  o r b i t  have t o  be 
control led by a force vector having three  components. It follows t h a t  the  
appl ica t ion  of a force  vector  a t  an a r b i t r a r y  point  on an o r b i t  w i l l ,  i n  gen- 
eral, produce changes i n  a l l  the o r b i t a l  elements. For example, the  applica- 
t i o n  of a force  vector  which has a component normal t o  the  o r b i t  plane has the  
e f f e c t  of producing a gyroscopic precession of the o r b i t  plane; and changes i n  
the o r b i t  plane o r i en ta t ion  give r i s e  t o  changes i n  the  argument of perifocus.  
Moreover, a force which l i e s  wholly i n  the  o r b i t  plane has no influence on the  
o r b i t  plane or ien ta t ion ,  but does produce changes i n  the semimajor ax is ,  the 
o r b i t  eccent r ic i ty ,  and the argument of perifocus.  If the  d i f f e r e n t i a l  equa- 
t i ons  f o r  the time rates of change of the  o r b i t a l  elements of a space vehicle 
i n  a non-Keplerian force f i e l d  a re  considered, i t  i s  possible  t o  make a d i r e c t  
determination of the  impulses required t o  produce prescribed changes i n  the 
elements i f  second-order terms are neglected. If the  second-order quan t i t i e s  
a re  omitted the  d i f f e r e n t i a l  equations r e l a t i n g  the time r a t e s  of change of the  
o r b i t a l  elements t o  the components of the  t h r u s t  vector  can be replaced by a 
s e t  of ordinary equations r e l a t i n g  the o r b i t a l  element increments t o  the  com- 
ponents of the impulse vector.  I n  addi t ion t o  the influence of t h r u s t  which 
may be t r e a t e d  as a control led per turbat ion,  the equations f o r  the time r a t e s  
of change of the  o r b i t a l  elements can be used t o  study the  e f f e c t  of the  ear th 's  
oblateness and e x t r a t e r r e s t r i a l  g rav i t a t iona l  per turbat ions.  If required,  the  
terms representing the  e f f e c t  of the e a r t h ' s  oblateness can be used t o  de te r -  
mine the  changes produced i n  the  elements of a parking o r b i t  by the  e a r t h ' s  
g rav i t a t iona l  per turbat ions.  These changes, which depend on the length of time 
spent i n  o r b i t  and on the  o r b i t  inc l ina t ion ,  cons is t  of per iodic  and secular  
var ia t ions .  I n  considering the e f f e c t  of the  g rav i t a t iona l  forces  produced by 
an oblate  planet  having a po ten t i a l  funct ion given by an i n f i n i t e  s e r i e s  of 
zonal harmonics, it i s  found t h a t  the  g rea t e s t  influence i s  exer ted by the  sec- 
ond harmonic of the  p l ane t ' s  g rav i ta t iona l  f i e l d .  Although the  influence of 
higher g rav i t a t iona l  harmonics may be r e l a t i v e l y  smaller than the second, the 
cumulative e f f e c t  of these harmonics i s  s ign i f i can t  i f  the  time spent i n  o r b i t  
i s  long enough t o  permit the  secular  changes t o  accumulate. 

D i f f e ren t i a l  Equations 

A s e t  of d i f f e r e n t i a l  equations which may be used t o  study the  influence 
of a perturbing force on the o r b i t a l  elements of an o rb i t i ng  space vehicle is  
derived i n  reference 4. See a l so  references 5 and 6. For an a l t e rna t ive  vec- 
t o r i a l  der ivat ion,  see appendix B. These equations give the time r a t e s  of 
change of the o r b i t a l  elements as functions of the  r ad ia l ,  transverse,  and the  
normal components of t he  perturbing force vector .  Since the  present study i s  
concerned only with those elements t h a t  determine the  s ize ,  shape, and or ienta-  
t i o n  of an o r b i t ,  the  influence of perturbing forces  on the time of per i foca l  

6 



passage i s  omitted. The appropriate equations as derived i n  reference 4 a r e  
reproduced i n  appendix A. 
usage, changes of notat ion are introduced where necessary. The rates of change 
of the o r b i t a l  elements are a l l  expressed as functions of the t r u e  anomaly with 
the exception of the equation f o r  the rate of change of the eccent r ic i ty .  This 
equation i s  seen t o  depend on the t r u e  anomaly and the eccentr ic  anomaly. For 
present appl icat ions,  it i s  more convenient t o  have a l l  the o r b i t a l  element 
r a t e s  expressed as functions of t h e  t r u e  anomaly only. 
eccentr ic  anomaly i s  removed from the equation by expressing it as a function 
of the  t r u e  anomaly and the  eccent r ic i ty .  The d i f f e r e n t i a l  equations f o r  the 
rates of change of the appropriate elements may be wri t ten i n  abbreviated form 
as follows: 

To conform t o  the most widely accepted space-age 

For t h i s  reason, the 

a; 
ii = - F. = aijFj 

aFj  J 

where 

i = l , 2 . .  . 5 

j = 1, 2, 3 

ai j  = a i j ( E i )  

The repeated subscr ipt  on the right-hand s ide of equation (1) denotes a summa- 
t i o n .  When equation (1) i s  wri t ten i n  f u l l ,  the coef f ic ien ts  a i j  become the 
elements of a 5 x 3 matrix; €1 
the s ize ,  shape, and or ien ta t ion  of the o r b i t  and they a r e  defined as follows: 

a r e  the f i v e  o r b i t a l  elements t h a t  determine 

The three mutually orthogonal components of the force vector a r e  
s c r i p t s  r, 8 ,  and h denote the r a d i a l ,  transverse,  and normal components, 
respect ively,  the  components F j  

F j .  If sub- 

are defined by the following column vector: 

7 



Equations For Impulsive Velocity Increments 

a21 a22 0 

a31 a32 a33 

Assuming t h a t  second-order quant i t ies  may be neglected, the re la t ionship  
between the  o r b i t a l  element increments and the  components of impulse i s  given 
by 

' Ir 
I e  

I n  terms of radial, transvert 
defined as follows: 

, and normal components, the impulse vector i s  

I n  matrix notation, equation (4)  assumes the  following form: 

6a 

6e 

6G 

6 i  

6 R  

It i s  c lear  from equation (6)  t h a t  the problem of determining impulse consis ts  
i n  f inding three unknown impulse components when there  a re  f i v e  equations. 
Since it has f i v e  rows and three columns, the rank of the matrix which operates 
on the column vector of impulse components i n  equation (6)  cannot exceed three .  
Hence, there  cannot be more than three independent rows. It follows t h a t  any 
combination of these equations taken three a t  a time can be used t o  obtain an 
impulse vector having the magnitude and d i rec t ion  required t o  produce pre- 
scribed changes i n  the three corresponding elements. The influence of t h i s  

8 



impulse on the remaining two o r b i t a l  elements i s  obtained from the  condition of 
compatibil i ty or consistency. The arrangement of the zero elements i n  the  
matrix operator gives an indicat ion of the way i n  which the o r b i t a l  elements 
a re  influenced by the components of impulse. For example, the f a c t  t h a t  
&13 = 823 = 0 denotes t h a t  changes i n  the  semimajor ax is  and the e c c e n t r i c i t y  
require in-plane forces .  These two o r b i t a l  elements a re  not influenced by 
forces  normal t o  the o r b i t  plane. Furthermore, the o r b i t  plane inc l ina t ion  and 
the longitude of the ascending node l i n e  can only be changed by the appl icat ion 
of forces  normal t o  the o r b i t  plane. This i s  evident from the f a c t  t h a t  

Since 
when e i t h e r  in-plane or out-of-plane forces  a r e  applied. 
perifocus i s  defined as the sum of the  nodal longitude and the argument of the 
l a t i t u d e  of perifocus,  then changes i n  o r b i t  plane or ien ta t ion  give r ise t o  
changes i n  the argument of perifocus. The matrix element a33 i s  a measure of 
the change i n  the argument of perifocus associated with changes i n  the o r b i t  
plane or ien ta t ion .  The matrix elements a i j  a r e  functions of the  t r u e  anomaly 
and the argument of the l a t i t u d e ;  hence, some of these elements vanish a t  cer- 
t a i n  o r b i t a l  loca t ions .  
vanishes a r e  points of ineffect iveness  f o r  the corresponding impulse component. 
However, such locat ions can be used t o  advantage i f  it i s  required t o  manipu- 
l a t e  one o r b i t a l  element without changing the others.  To show the dependence 
of the matrix elements on the t r u e  anomaly and the argument of the l a t i t u d e ,  
equation (6)  i s  wri t ten i n  f u l l .  

a33 # 0, it follows t h a t  the  argumnt of perifocus undergoes changes 
If the  argument of 

The o r b i t a l  locat ions where a given matrix element 

2a'e sin v 

JJ.cl--2, 
2a2(1 + e cos v) 

Jm 0 

a ( l  - e') cos v(2 + e cos v) + e 
1 i e cos v 0 

~ j v  sin v(2 + e cos v )  sin(v + w)tan[(l/2)1i 
e (1 + e cos v) (1 + e cos v) 

0 0 a(1 - e 2 )  cos(v + w) J I-1 (I. + e cos v) 

0 

~ 

a (1  - e2) sin(v + w) J I-1 sin i(l + e cos v) 
0 



The matrix element a43 which controls  the o r b i t  plane inc l ina t ion  i s  seen t o  
vanish when the argument of the l a t i t u d e  i s  90' o r  270°, whereas as3, which 
controls the longitude of the  ascending node l i n e ,  vanishes a t  the  ascending 
and descending nodes. Hence, a normal impulse applied a t  a nodal posi t ion w i l l  
a l t e r  the o r b i t  plane inc l ina t ion  without changing the  longitude of the  ascend- 
ing node l ine ;  whereas, a normal impulse applied when the argument of the l a t i -  
tude i s  90' or 270° w i l l  a l ter  the longitude of the  ascending node l i n e  without 
changing the  o r b i t  plane inc l ina t ion .  The components of the impulse vector 
required t o  make prescribed changes i n  the semimajor axis ,  the eccentr ic i ty ,  and 
the argument of perifocus can be determined from the  following matrix equation: 

I e  

I h  

Therefore 

-1 
6a 

6e 

m 

(9)  

The impulse vector obtained from equation (9)  would produce the prescribed 
changes i n  the  o r b i t a l  elements; however, such an impulse would produce 
unwanted changes i n  the o r b i t  plane or ien ta t ion .  Subsequent corrections t o  the 
o r b i t  plane or ien ta t ion  would then re-introduce e r r o r s  i n  the argument of per i -  
focus. I n  view of t h i s  it i s  considered more expedient t o  e f f e c t  the pre- 
scribed changes by the  use o f  an impulse vector which l i e s  wholly i n  the o r b i t  
plane. The influence of such an impulse on the semimajor axis, the eccentr ic-  
i t y ,  and the argument of perifocus can be determined from the following matrix 
e quat ion : 

a l l  a12 1a21 a22 j 
831 a32 

'Ir I e  I 6a 

6e 

6 W  

The rank of the matrix which operates on the column vector of impulse compo- 
nents cannot exceed two, and therefore the number of l i n e a r l y  independent rows 
cannot exceed two. Hence, any combination of these equations taken two a t  a 
time can be used t o  obtain an impulse having the  magnitude and d i rec t ion  
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required t o  produce prescribed changes i n  the  corresponding elements. 
impulse vector required t o  produce prescribed changes i n  the semimajor axis and 
the e c c e n t r i c i t y  i s  obtained from equation (10) i n  the following form: 

The 

la11 a12’ 

a21 a22 

a l l  a12 (I,) = ia21 a22 1 (6:) 

(:,) = 

Compatibility o r  consistency of equation (10) requires t h a t  

Therefore, 

6a 

6e 

1 (I,) 
Physically,  t h i s  means t h a t  i n  producing the prescribed changes 6a and 6e by 

the appl icat ion of the impulse vector (Ir Ie) , the change given by equation 
(12) has been induced i n  the argument of perifocus.  From equation (7)  it i s  
seen t h a t  these induced e r r o r s  can be removed without changing the remaining 
elements i f  a r a d i a l  impulse i s  applied a t  perifocus o r  apofocus. 
t h a t  the impulse vector should have an out-of-plane component 
shows t h a t  the t o t a l  change induced i n  the argument of perifocus i s  given by 

T 

In  the event 
Ih, equation (8) 

63 = [ ia31 a32) ( a12) ( :I) + a33 I h  ] 
a21 a22, 

The solut ion of equation (11) i s  given by 

11 
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On s u b s t i t u t i o n  from equation (7), it i s  found t h a t  the  impulse vector required 
t o  produce prescribed changes 6a and 6e i n  the semimajor ax is  and the eccen- 
t r i c i t y ,  respectively,  i s  given by 

Radial impulse- r e q u i r e c t o  change the  __- argumept - of perifocus . . - If the  r a d i a l  
impulse required t o  produce an incremental change 
focus be denoted by 

6w i n  the argument of p e r i -  
I,, then from equation (7)  

If t h i s  impulse were applied a t  perifocus o r  apofocus, it would have no e f f e c t  
on the remaining o r b i t a l  elements. 
change the argument of perifocus by 
elements i s  given by 

Hence, the r a d i a l  impulse required t o  
6 w  without changing the remaining o r b i t a l  

where 
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Normal impulses required t o  change the  or ien ta t ion  of the o r b i t a l  plane.-  
If the impulse required t o  produce an incremental change 
plane inc l ina t ion  be denoted by Ii, then from equation (7) 

8 i  i n  the o r b i t  

L J 

Likewise, i f  the impulse required t o  produce an incremental change 8 R  i n  the 
longitude of the ascending node be denoted by In ,  then from equation (7)  

s i n  i 6R J (1 + e cos v) 
s i n ( v  + u) 

From equations (19) and (20), it i s  seen t h a t  i f  a normal impulse were applied 
when the argument of the l a t i t u d e  (v + u) was 0' o r  180°, the o r b i t  plane 
inc l ina t ion  would be changed without a l t e r i n g  the longitude of the ascending 
node. Alternatively,  i f  it were required t o  a l t e r  the longitude of the ascend- 
ing node without changing the o r b i t  plane inc l ina t ion ,  the normal impulse would 
be applied when the argument of the l a t i t u d e  w a s  90' o r  270'. 

Impulsive Velocity Increments Required t o  Produce Prescribed 
Changes i n  the Orbi ta l  Elements of Noncircular Orbits 

Simultaneous changes i n  the semimajor ax is  and the  eccent r ic i ty . -  To 
f a c i l i t a t e  the computation of the  ve loc i ty  increments required t o  produce pre- 
scribed changes i n  the semimajor ax is  and the  eckent r ic i ty  of the o r b i t  of a 
space vehicle,  equation (15)  may be rearranged as follows: 

The elements of t h i s  matrix may be obtained from equation (17).  
sa/.= m/100 and 6e/e = n/100, we can use equation (21) t o  obtain the impulse 
vector required t o  produce an m percentage change i n  the semimajor axis, and 
an n percentage change i n  the  o r b i t  eccent r ic i ty .  The required impulse vec- 
t o r  has the following components: 

By l e t t i n g  

c11 + c12 

c21 + c22 



where the matrix elements C i j  have the following values, 

c22 = - 

+ e cos v ) ~  
100 s i n  v 3 

(1 + e cos v> 100 

(1 + e cos v) P c21 = J a ( 1 -  e2) 

The magnitude of the impulse vector i s  given by 

To achieve the desired r e s u l t ,  the  impulse vector must be incl ined a t  an angle 
7 ae t o  the l o c a l  horizontal ,  where 

= tan-l + c12) 
Yae c21 + c22 

The angle between the impulse vector and the l o c a l  tangent t o  the f l i g h t  path 
a t  the point of appl icat ion of the impulse i s  given by pae, where 
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Changes i n  the argument of perifocus resu l t ing  from changes i n  the semi- 
major ax is  and the o r b i t  eccent r ic i ty . -  If the change i n  the argument of per i -  
focus induced by the appl ica t ion  of the impulse Iae  be denoted by 6Wae, then 

where 

and 

a 3 2 = & J  a (1  - e2) 
e 

s i n  v(2 + e cos v) 
(1 + e cos v) 

A r a d i a l  impulse i s  required t o  n u l l  
o r b i t a l  elements, and it must be applied a t  perifocus o r  apofocus. If t h i s  
impulse be denoted by 

Swae without changing the remaining 

then from equation (18a) I W a e  9 

Prescribed changes i n  the  semimajor ax is . -  To produce an m percentage 
change i n  the semimajor ax is  of a noncircular o r b i t ,  without changing the o r b i t  
eccent r ic i ty ,  requires  the appl icat ion of an impulse Ia, where 

1, = J- ( 3 3 )  

For the  desired e f f e c t ,  the impulse vector must be applied a t  an angle 
the l o c a l  horizontal  where 

ya t o  



The angle between the impulse vector and the  l o c a l  tangent t o  the f l i g h t  path 
a t  the point  of appl icat ion of the impulse i s  given by Ba, where 

) Pa = tan-'( "> - tan-'( e s i n  v 
c21 1+ e cos v (35) 

Changes i n  the  argument ~ of perifocus r e s u l t i n g  ~~ f r o g  changes i n  the - semi- ._ 
major axis. - I f  the change i n  the argument of perifocus induced by the  impulse 
1, be denoted by 8wa, then 

where A s  ind i -  
cated previously, a r a d i a l  impulse i s  required t o  n u l l  6Wa without changing 
the remaining o r b i t a l  elements and it must be applied a t  perifocus or  apofocus 
If the required impulse be denoted by 

a3= and a32 have the values given i n  equations ( 3 0 )  and (31). 

Iwa, then from equation (18a), 

Prescribed changes i n  the _- __ o r b i t  eccent r ic i ty . -  The impulse required t o  
produce an n percentage change i n  the eccent r ic i ty ,  without changing the 
semimajor axis ,  i s  given by 

1, = Jc.....-. 
The impulse vector  must be applied at an angle 
where 

ye t o  the l o c a l  horizontal  
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The corresponding angle between the impulse vector and the  l o c a l  tangent t o  the 
f l i g h t  path i s  given by 

pe = tan-' (k) - tan-' ( e s i n  v 
c22 

From equations (24), (26), and (40) it i s  seen t h a t  

hence, the angle f i e  i s  always +goo. It follows t h a t  t o  change the o r b i t  
e c c e n t r i c i t y  without changing the semimajor axis ,  the impulse must be directed 
along the normal t o  the f l i g h t  path. 

Changes i - r - t h e  argument of perifocus resu l t ing  from changes i n  the o r b i t  
eccent r ic i ty . -  The change i n  the argument of perifocus produced by the impulse 
I, i s  given by 

The r a d i a l  impulse required t o  n u l l  6~ i s  given by 

Application t o  Lunar Reconnaissance Maneuvers 

Since only a l imi ted  area of t h e  lunar  surface can be observed from one 
o r b i t ,  the  o r b i t  plane or ien ta t ion  must be changed t o  permit observation of 
other  areas.  Orbi ta l  plane r o t a t i o n  about any posi t ion vector can be accom- 
pl ished by the appl icat ion of an impulse normal t o  the o r b i t a l  plane a t  any 
desired o r b i t a l  locat ion,  as indicated i n  previous sect ions.  

The or ien ta t ion  of an o r b i t a l  plane i s  by convention defined i n  terms of 
the o r b i t  plane i n c l i n a t i o n  and the  longitude of the ascending node l i n e .  T h i s  
way of resolving the o r b i t  plane or ien ta t ion  i n t o  components i s  convenient f o r  
es tab l i sh ing  the or ien ta t ion  of the  plane i n  space. However, f o r  lunar  or 
planetary reconnaissance work, there  i s  no need t o  determine the  o r b i t a l  plane 
or ien ta t ion  i n  terms of the  angular displacement of the node l i n e  from some 
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f ixed  l i n e ,  and the  angular displacement of t he  o r b i t a l  plane from some f ixed  
plane, measured as a ro t a t ion  about the  node l i n e .  For the  appl icat ions con- 
templated here, it i s  more convenient t o  consider the o r b i t a l  plane ro t a t ion  
vector ra ther  than i t s  components. It i s  assumed t h a t  from some i n i t i a l  o r b i t  
which i s  unsa t i s fac tory  from the  point  of view of observation and photographic 
survey, an o r b i t  with a s a t i s f a c t o r y  s i z e  and shape has been es tab l i shed  by the  
methods previously indicated.  When the  surface of t he  t a r g e t  body has been 
observed and photographed from t h i s  o r b i t ,  the  o r b i t a l  plane can then be 
ro t a t ed  about the pos i t ion  vector  from the center of t he  t a r g e t  body t o  the 
vehicle by the  appl ica t ion  of an impulse normal t o  the  o r b i t a l  plane. This i s  
evident from the  following considerations:  
change the  d i rec t ion  of the  angular momentum vector  h without changing i t s  
magnitude i s  given by 

the  precessional  - torque required t o  

F i = a x T l  (44) 

- 
where E i s  the  precessional torque vector  and w i s  the precessional r a t e  
vector.  This symbol i s  not t o  be confused with the  symbol f o r  the argument of 
perifocus.  Solving t h i s  equation f o r  w gives 

- 

however , 

- - 
where r i s  the  pos i t ion  vector  and T i s  the  t h r u s t  vector .  On subs t i t u t ing  
from equation (46) i n  equation (45) , the  angular ve loc i ty  w i s  obtained i n  
the following form: 

- 

where Fh i s  the  component of t h r u s t  normal t o  the o r b i t  plane. Equation (47) 
shows t h a t  the o r b i t a l  plane ro t a t e s  about the  pos i t ion  vector i n  the presence 
of a force which has a component i n  the d i r ec t ion  of the  normal t o  the o r b i t a l  
plane. It i s  seen t h a t  f o r  a given force Fh, the angular ve loc i ty  w i s  pro- 
por t iona l  t o  the r a d i a l  dis tance 
duce a prescribed change i n  o r i en ta t ion  decreases with r a d i a l  distance.  

r; and, hence, the  impulse required t o  pro- 

The normal impulse I h  required t o  produce a prescribed change 60 i n  
the  o r b i t  plane o r i en ta t ion  can be obtained from equation (47) as follows: 



theref ore 

theref ore 

r 1 

RESULTS AND DISCUSSION 

The r e s u l t s  presented here have been divided i n t o  two par ts :  one p a r t  
deals with the ve loc i ty  increments required t o  make prescribed changes i n  the 
elements of e a r t h  o r b i t s ,  and the other deals with the appl icat ion of the 
method t o  lunar  reconnaissance maneuvers. 

Earth Orbi ta l  Element Changes 

The r e s u l t s  p lo t ted  i n  f igures  1 and 2 show the  ve loc i ty  increments 
required t o  produce a range of prescribed changes i n  the semimajor ax is  of an 
e a r t h  o r b i t ,  subject t o  the constraint  t h a t  the e c c e n t r i c i t y  r e t a i n s  i t s  i n i -  
t i a l  value. The r e s u l t s  p lo t ted  i n  f igures  1 and 2 a r e  f o r  an o r b i t  with a 
semimajor ax is  of 8,120 s t a t u t e  miles. However, the curves i n  f igure 1 r e f e r  
t o  an o r b i t  with an e c c e n t r i c i t y  of 0.2; whereas those of f igure  2 r e f e r  t o  an 
o r b i t  with an e c c e n t r i c i t y  of 0.5. Each f igure  shows the ve loc i ty  increments 
required t o  produce f i v e  percentage increases i n  the semimajor axis .  The per- 
centage increases se lec ted  f o r  computation were: 0.1, 0.3,  0.5, 0.7, and 0.9. 
For convenience, however, the corresponding increase i n  miles i s  noted on each 
curve. The curves superimposed on these p l o t s  show the direct ions which the 
ve loc i ty  increments must have i n  order t o  produce the desired change. It i s  
i n t e r e s t i n g  t o  note t h a t  there  are two points  on each o r b i t  where a tangent ia l  
impulse can be used t o  produce a prescribed change i n  the semimajor a x i s  with- 
out changing the e c c e n t r i c i t y  of the o r b i t .  It i s  easy t o  show t h a t  t h i s  con- 
d i t i o n  arises when the length  of the  pos i t ion  vector t o  the vehicle equals the 
length of the semimajor axis .  The condition r = a i s  s a t i s f i e d  when the t r u e  
anomaly s a t i s f i e s  the following equation: 

-1 v = cos ( -e )  
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\ Changes i n  the argument of perigee r e su l t i ng  from prescribed changes i n  
the semimajor axis.- The results p lo t t ed  i n  f igu res  3 and 4show the changes i n  
the  argument of perigee r e su l t i ng  from the range of percentage increases i n  the  
semimajor ax is  of the  e a r t h  o r b i t  discussed i n  the  preceding sect ion.  Each 
curve of f igu re  3 shows the changes i n  the argument of perigee r e su l t i ng  from 
the  corresponding curve of ve loc i ty  increments p l o t t e d  i n  f igure  1. Likewise, 
each curve of f igure  4 shows the  changes i n  the  argument of perigee r e su l t i ng  
from the  corresponding curve of ve loc i ty  increments p lo t t ed  i n  f igure  2. 

Eccentricity_changes.-  The impulsive ve loc i ty  increments required t o  pro- 
duce prescribed changes i n  the  o r b i t  e c c e n t r i c i t y  subject  t o  the cons t ra in t  
t h a t  the  semimajor axis r e t a i n s  i t s  i n i t i a l  value a re  p lo t t ed  i n  f igures  5 and 
6. The r e s u l t s  shown are f o r  an e a r t h  o r b i t  with a semimajor ax is  of 8,120 
miles. However, the  curves shown i n  f igu re  5 r e f e r  t o  an o r b i t  with an eccen- 
t r i c i t y  of 0.2; whereas those of f igure  6 r e fe r  t o  an o r b i t  with an eccent r ic -  
i t y  of 0.5. Each f igu re  shows the  ve loc i ty  increments required t o  produce f i v e  
percentage increases  i n  the  o r b i t  eccen t r i c i ty .  The percentage increases  
se lec ted  f o r  computation were: 0.1, 0.3, 0.5, 0.7, and 0.9. The curves super- 
imposed on these p l o t s  show the  d i rec t ions  the ve loc i ty  increments must have i n  
order t o  produce the required change i n  the eccen t r i c i ty .  To change the  eccen- 
t r i c i t y  without changing the  semimajor axis ,  it has been shown i n  equation (41) 
t h a t  it i s  necessary t o  apply the impulse vector i n  a d i rec t ion  perpendicular 
t o  the  l o c a l  f l i g h t  path, and i n  the plane of t he  o r b i t .  See the curve of P 
i n  f igures  5 and 6. 

Changes i n  the argument of perigee r e su l t i ng  from p_rescribed - _- __ changes-in - 

the  o r b i t  eccen t r i c i ty . -  The curves p lo t t ed  i n  f i g u r e s  7 and 8 show the incre-  
mental changes induTe2 i n  the  argument of perigee by the  ve loc i ty  increments 
used t o  produce the  percentage changes i n  e c c e n t r i c i t y  discussed i n  the  pre- 
vious section. Each curve of f igure  7 shows the changes i n  the  argument of 
perigee induced by the  corresponding curve of ve loc i ty  increments p lo t t ed  i n  
f igure  5. Likewise, each curve of f igure  8 shows the  changes i n  the argument 
of perigee induced by the  ve loc i ty  increments p l o t t e d  i n  f igure  6. It i s  of 
i n t e r e s t  t o  note t h a t  there  a re  two points  on an o r b i t  where a normal impulse 
can be applied t o  produce a prescribed change i n  the  eccen t r i c i ty  without induc- 
ing a change i n  the  argument of perigee. 
points  correspond t o  values of the  t rue  anomaly given by the following equation: 

It i s  easy t o  show t h a t  these two 

Orbi ta l  plane inc l ina t ion . -  - -~ ~ To produce a prescribed change i n  the o r b i t a l  
plane inc l ina t ion ,  a ve loc i ty  increment must be appl ied i n  the  d i rec t ion  of the  
normal t o  the  o r b i t  plane. 
tude of the  impulsive ve loc i ty  increments required t o  produce a 1' change i n  
the  o r b i t  plane inc l ina t ion  of an e a r t h  o r b i t .  The r e s u l t s  a r e  p lo t t ed  i n  f i g -  
ure 9. The i n i t i a l  values of t he  o r b i t a l  elements are as indicated on the  
f igure.  

Equation (19) has been used t o  compute the  magni- 
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Nodal longitude.-  A s  i n  the case of o r b i t  plane incl inat ion,  changes i n  
the nodal longitude require t h a t  the corrective impulses be applied i n  the 
d i rec t ion  of the normal t o  the o r b i t a l  plane. 
compute the impulsive ve loc i ty  increments required t o  produce a 1' change i n  
the longitude of the ascending node l i n e  of an e a r t h  o r b i t  with an inc l ina t ion  
of 45'. 
o r b i t a l  elements a r e  as indicated on the f igure.  It i s  t o  be noted t h a t  
changes i n  the o r b i t  plane inc l ina t ion  a re  coupled t o  changes i n  the longitude 
of the ascending node l i n e ,  and vice versa, unless the impulses a re  applied 
when the argument of the l a t i t u d e  ( v  + w )  i s  Oo, go0, 180°, o r  270'. 

Equation (20) has been used t o  

The r e s u l t s  a re  p l o t t e d  i n  f igure  10. The i n i t i a l  values of the 

Application t o  Lunar Reconnaissance 

Advantage of using high e c c e n t r i c i t y  o r b i t s  f o r  cer ta in  types of recon- 
naissance maneuvers.-- It i s  evident from equation (48) t h a t  f u e l  requirements 
could be reduced f o r  c e r t a i n  types of reconnaissance missions i f  the lunar  sur-  
face area of i n t e r e s t  were i n  the  v i c i n i t y  of perilune and subsequently the 
o r b i t  plane were ro ta ted  about the  l i n e  of apsides. The impulse required t o  
produce a 1 change i n  o r b i t  plane or ien ta t ion  i s  seen t o  be a minimum i f  the 
o r b i t  plane i s  made t o  r o t a t e  about the l i n e  of apsides by the appl icat ion of a 
normal impulse a t  apolune. The impulse required i s  a maximum i f  the plane 
change maneuver i s  executed a t  perilune.  The r a t i o  of the impulse required a t  
apolune t o  t h a t  required a t  perilune i s  gPven by (1 - e ) / ( l  + e ) .  Equation 
(48) has been used t o  compute the  ve loc i ty  increments required t o  r o t a t e  v a r i -  
ous o r b i t  planes through a 1' angle about the l i n e  of apsides. The r e s u l t s  i n  
t a b l e  I give a good indicat ion of the advantage of executing plane change 
maneuvers when the vehicle i s  a t  apolune of high e c c e n t r i c i t y  o r b i t s .  

0 

Prescribed changes i n  the semimajor axis of a lunar  o r b i t . -  Equations (33) 
through (35) have been used t o  compute the impulse vector required t o  make pre- 
scribed changes i n  the semimajor ax is  of a lunar  o r b i t ,  subject t o  the con- 
s t r a i n t  t h a t  Ae = 0. The r e s u l t s  f o r  a lunar o r b i t  with a semimajor ax is  of 
1,600 miles are  p l o t t e d  i n  f igures  11 and 12.  
the values indicated on the f igures .  The incremental changes i n  the argument 
of perilune r e s u l t i n g  from changes i n  the semimajor ax is  a r e  p lo t ted  i n  f igures  
1.3 and 14. 

The o r b i t  e c c e n t r i c i t i e s  have 

Changes i n  perilune height.-  A lunar  o r b i t  with a semimajor ax is  of 1,400 
miles and an e c c e n t r i c i t y  of 0.2 has a perilune height of 40 miles. 
i t y  increments required t o  reduce the perilune height by 5.6 miles were com- 
puted and p lo t ted  as a funct ion of the t rue  anomaly i n  f igure  15. 
shows the ve loc i ty  increments required t o  produce the  required change i n  height 
by reducing the semimajor ax is  without changing the o r b i t  eccent r ic i ty .  Curve 
1 of f igure  16 shows the  changes i n  the argument of perilune induced by changes 
i n  the semimajor ax is .  When the perilune height i s  changed without a l t e r i n g  
the o r b i t a l  period ( i . e . ,  without changing the semimajor axis), curve 2 of f i g -  
ure 1 5  r e s u l t s .  The corresponding p l o t  of induced changes i n  the argument of 
perilune i s  given by curve 2 of f igure  16. 
i t y  o r b i t s  can grea t ly  reduce the ve loc i ty  increments required t o  produce 

The veloc- 

Curve 1 

Because the  use of high eccentr ic-  
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prescr ibed changes i n  o r b i t  plane or ien ta t ion ,  the  ve loc i ty  increments required 
t o  modify a lunar  o r b i t  with a semimajor ax i s  of 2,200 miles and an eccent r ic -  
i t y  of 0.5 have been computed. It i s  assumed t h a t  t h i s  o r b i t  which has a pe r i -  
lune height of 20 m i l e s  would be es tab l i shed  by successive appl icat ions of the 
method described i n  t h i s  report .  The r e s u l t s  p lo t t ed  i n  f igure  1.7 show the  
ve loc i ty  increments required t o  reduce the  height a t  perilune by 5.5 miles. 
Curve 1 of f igu re  17 shows the ve loc i ty  increments required t o  reduce per i lune 
height by reducing the  semimajor ax is  without changing the o r b i t  eccen t r i c i ty .  
Curve 2 of f igure  1.7 shows the  ve loc i ty  increments required t o  modify the  
height a t  per i lune by the  prescribed amount, by changing the  o r b i t  e c c e n t r i c i t y  
without a l t e r i n g  the  semimajor ax is .  When equal percentage changes a re  made i n  
the  semimajor ax i s  and the  o r b i t  eccen t r i c i ty ,  curve 3 of f igure  1-7 r e s u l t s .  
The corresponding curves of f igu re  18 show the  changes induced i n  the  argument 
of per i lune by the ve loc i ty  increments p lo t t ed  i n  f igu re  1.7. The curves of 
f igure  1.9 give the  d i rec t ions  which the  ve loc i ty  increments p lo t t ed  i n  f igure  
1.7 must have i n  order t o  produce the prescribed change i n  per i lune height.  

CONCLUDING FSMARKS 

Replacing a set of d i f f e r e n t i a l  equations r e l a t i n g  the time rates of 
change of the  o r b i t a l  elements t o  the  components of a perturbing force with a 
s e t  of ordinary equations r e l a t i n g  the o r b i t a l  element increments t o  the  com- 
ponents of an impulse vector makes it possible  t o  compute the impulsive veloc- 
i t y  increments required f o r  prescribed changes i n  the  elements of lunar  or 
planetary o r b i t s .  The necess i ty  of omitt ing second and higher order quant i t ies ,  
which the  method e n t a i l s ,  gives r i s e  t o  e r r o r s  i n  the  computed r e s u l t s .  How- 
ever, numerical ana lys i s  ind ica tes  t h a t  these e r r o r s  a re  well within acceptable 
limits f o r  the  types of maneuvers contemplated. A s  an example, a lunar  o r b i t  
with a semimajor ax i s  of 1,600 miles and an eccen t r i c i ty  of 0.2 may be consid- 
ered. I n  making a 5-mile change i n  the  semimajor ax is ,  it was found t h a t  the  
impulse computed on the bas i s  of the  simplifying assumptions made gave r i s e  t o  
a change i n  the  semimajor ax i s  which was approximately 100 f e e t  i n  e r r o r .  A s  a 
second example, an e a r t h  o r b i t  with a semimajor ax i s  of 8,000 miles and an 
eccen t r i c i ty  of 0 .1  may be c i ted .  
axis ,  it w a s  found t h a t  the computed impulse gave r i s e  of an incremental change 
i n  the  semimajor ax is  which was approximately 50 f e e t  i n  e r ro r .  

I n  making an 8-miie change i n  the semimajor 

Ames Research Center 
National Aeronautics and Space Administration 

Mof'fett Field,  C a l i f . ,  Jan. 9, 1964 
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APPENDIX A 

DIFFERENTIAL EQUATIONS FOR THE TIME RATES OF CHANGE OF THE 

ORBITAL ELEMENTS I N  THE PRESENCE OF PERTCTRBING FORCES 

It i s  shown i n  reference 4 t h a t  the va r i a t ion  of t he  o r b i t a l  elements can 
be expressed i n  terms of the  components o f  the  d is turb ing  force.  The formula- 
t i o n  i s  such t h a t  t he  rates of change of the  o r b i t a l  elements a re  expressed as 
functions of the r ad ia l ,  t ransverse,  and normal components of the perturbing 
force vector.  In t e r m s  of the  notat ion of reference 4, the equations f o r  the  
r a t e s  of change 

a t  =J cos cp 

of the  o r b i t a l  elements assume the  foliowing form: 

t an  cp s i n  w + T sec c p ( 1  + e COS w)] (AJ-1 

[ S  s i n  w + T( COS w + cos E )  1 (A21 

1 (-as cos2cpcos w + r T  s i n  w(2+e  cos w >  +rW s i n c p t a n [ ( l / 2 ) i l s i n  u )  
s i n  qi cos cp 

. .  - - _ -  
d t  @ 

(A3)  

(A4)  
d i  - r W  COS u - _  
d t  &cos cp 

r W  s i n  u - dR 
d t  J i T c o s  cp s i n  i 
_ -  

where 

W 

s i n  cp 

E 

U 

s, T,W 

t r u e  anomaly 

eccen t r i c i ty  

eccent r ic  anomaly 

argument of the l a t i t u d e  (i .e. , the  sum of the  argument of perifocus,  
measured from the  ascending node l i n e  and the  t r u e  anomaly) 

r a d i a l ,  t ransverse,  and normal components, respect ively,  of the per- 
turbing force  vector 
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I n  the  notat ion of the  present repor t  (see f i g .  20) 

The r a t e s  of change of t he  o r b i t a l  elements a re  a l l  expressed as functions of 
the  t rue  anomaly, with the exception of the  equation f o r  the rate of change of 
eccent r ic i ty .  This equation i s  seen t o  depend on the  t rue  anomaly and the  
eccent r ic  anomaly. For present appl icat ions it i s  more convenient t o  have a l l  
the  o r b i t a l  element r a t e s  expressed as functions of t he  t rue  anomaly only. For 
t h i s  reason the eccent r ic  anomaly i s  removed from the equation by expressing it 
as a funct ion of the t rue  anomaly and the e c c e n t r i c i t y  as follows: 

a ( 1  - e2) 
1 + e cos v r =  

r - = I - e cos E a 

theref  ore 

cos v + e 
1 + e cos v COS E = 

theref  ore 

cos v(2 + e cos v) + e 

1 + e cos v 
COS v + COS E = 
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Subst i tut ing from equations (A6) through (Al2) i n  equations (Al) through (A?) 
yie lds  the following form of the equations f o r  the r a t e s  of change of the 
o r b i t a l  elements : 

+ T) [ ( e  s i n  v ) r  + (1 + e cos v )e l  (V'Pob + ocpet A A 2a2 - da _ -  
dt ,/- 

- dR 
d t  
- -  

where 

d - 
A 
h sin(v + w) 

s i n  i(l + e cos v) 
- 



APPENDIX B 

VECTOR DERIVATION OF THE EQUATIONS FOR 

ORBITAL ELEMENT PERTURBATIONS 

I 

The equation of motion of a p a r t i c l e  of u n i t  mass moving i n  an inverse- 
square-law c e n t r a l  force f i e l d  i s  

Vector mult ipl icat ion - of each s ide of equation (Bl) by the  angular momentum 
vector h gives 

d2F - - , x h = - E ( / \ , X h )  
d t  r2 

On subs t i tu t ion  from equation (B3) i n  equation (B2) it i s  seen t h a t  

d2F * A  

dt2 
-x  IT = (pe )e  

therefore 

The i n t e g r a l  of equation (B4) i s  given by 

- - 
where e i s  a constant vector of integrat ion.  The vector  e may be expressed 
i n  terms of i t s  s c a l a r  magnitude and a vector of u n i t  length as follows: 

- A  e = ea 

where 
(B5)  gives 

i s  a u n i t  vector ( f i g .  20). Subst i tut ing equation (B6) i n  equation 
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- 
Equation (B7) may be solved t o  obtain the pos i t ion  vector 
p l ica t ion  of each s ide by r gives the following equation f o r  r: 

r. Scalar m u l t i -  - - 

therefore  

- 
= r ( l  + e cos v) ( r x  V) * 

I-L 

therefore 

h2/P r =  
1 + e cos v 

Vector mult ipl icat ion of each s ide of equation (B7)  by h gives 

- 
h x (7 x h) = ph x (e2 + I )  

the r e  fore  
A A - v = [ e  + e ( h  x 2 ) ]  h 

A 
With the notation of f igure  20, the u n i t  vector a may be expressed i n  the 
following form: 

A A A 
a = (cos v ) r  - ( s i n  v ) e  

If the assumption of an inverse-square-law c e n t r a l  force f i e l d  i s  not satis- 
f i e d ,  the equation of - motion must be modified accordingly. 
a perturbing force P, the equation of motion becomes 

I n  the presence of 

Furthermore, i n  the presence of the perturbing force vector 
of constancy no longer appl ies  t o  the vector F. Hence, 

??, the assumption 
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I 

the  ref ore  

= (E + 5) x ii + V X  ( F x  F) 
I-1 a t  

therefore  

0313) p z = P X r ; + v X ( r X F )  dF - 

The f i r s t  t e r m  on the r i g h t  s ide  of equation ( B l 3 )  may be wri t ten i n  the f o l -  
lowing a l t e rna t ive  form: 

l ikewise,  

AA A A  - 
r X = r (he  - oh) - P 
- 

When subs t i tu t ions  are made from equations (B9)  and ( B l ? ) ,  the  second t e r m  on 
the  r i g h t  s ide  of equation ( B l 3 )  i s  given by 

- pr  AA A A A A  - 
v x (F x p) = -(re h + e [̂ .s + ( e  - a)hh] 1 P 

A Subst i tut ion for a from. equation ( B l O ) ,  equation ( ~ 1 6 )  becomes 

AA AA - 
[(l + e cos v)% - e s i n  v(88 + hh)]  - P V x (7 x F) = (B17)  h 

From equations (B14)  and ( B l 7 )  it follows t h a t  

P x  h +  V x  ( F x  P)= (1 + e cos v)  + h 
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The components of the term on the l e f t  s ide of equation (Bl3) may be obtained 
as follows: 

- - 
where w i s  the angular ve loc i ty  of the vector e.,, A s  the vector 'E moves i n  
the o r b i t  plane, it r o t a t e s  about the u n i t  vector h which i s  normal t o  the 
plane. I n  addition, the o r b i t  - plane r o t a t e s  about the instantaneous posi t ion 
vector.  Hence, the vector  w i s  given by 

therefore  

By subs t i tu t ion  from equation (B2O) i n  equation (B19)  it i s  found t h a t  

p = [p (G cos v + be s i n  v r + p he cos v - e s i n  v 
> ^  ( > e  

A/\ - -  're s i n  v(hh) - 
h 

Equating coef f ic ien ts  of l i k e  vectors i n  equations (si8 
following r e s u l t s :  

(B21) 

and (B21) y ie lds  the 

and 

On solving for 6 and h it i s  found t h a t  

6 = {E [cos v(2 + e cos v) + e] 8 + (i s i n  v) ?} - E; 

- 
i, = [I - s i n  v(2 + e cos v)e  A - (k cos p] . P 
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It i s  seen t h a t  f o r  c i r c u l a r  o r b i t s  there  i s  a s i n g u l a r i t y  i n  the equation f o r  
b because of the presence of e i n  the denominator. The .physical s i g n i f i -  
cance of t h i s  i s  t h a t  f o r  low e c c e n t r i c i t y  o r b i t s  the argument of perifocus i s  
not w e l l  defined and does not e x i s t  f o r  c i r c u l a r  o r b i t s .  

Orbi ta l  Plane Orientation 

Since the or ien ta t ion  of a plane i n  space i s  uniquely determined by the 
normal t o  i t s  surface, the  or ien ta t ion  of an o r b i t  plane i s  determined by the 
angular momentum vector.  
time r a t e s  of change of the elements defining the or ien ta t ion  of an o r b i t  plane 
i n  space. 
o r b i t  plane a r e  r e l a t e d  t o  the u n i t  vectors k and h as follows: 

This f a c t  may be used t o  advantage i n  f inding the  

The longitude of the ascending node line,,and the inc l ina t ion  of the 
A 

A / \  A 
k x h = ( s i n  i ) R  

theref  ore 

and 

dc r b  A - 
d t  h k X  - =  - - ( k X  0 )  ( h  P) 

A 
The u n i t  vector 8 has the following components along and perpendicular t o  the 
ascending node l i n e  

A A e = - ( s i n  0 ) ~  + cos e& x ?i) (B26) 

On subs t i tu t ion  from equation (~26) i n  equation (B25), the following r e s u l t  i s  
obtained : 

- A 
n n  

s i n  8 ( k  X R) + cos 8 cos i"] fi P) d t  h 

From equations (B24) and (B27) it follows t h a t  

(?I F) d i  r cos 8 
d t  h 
- -  - 

- (2 P) d R  - r s i n  8 
d t  h s i n  i 
- _  



Orbital  Plane Orientation and the  Argument of Perifocus 

Since the  o r b i t a l  plane r o t a t e s  about the instantaneous posi t ion vector F, 
the  argument of perifocus as measured from the l i n e  of nodes w i l l  vary i n  the 
manner indicated i n  sketch ( a ) .  

. x f  

Sketch (a)  

When the s ine ru le  i s  applied t o  the spherical  t r i a n g l e  ABC, it i s  seen t h a t  

s i n  0 
s i n ( i  + 6 i )  

- - s i n ( e  + 60) 
s i n  i 

therefore  

68 = - ( t a n  e cot i ) 6 i  

Since the  pos i t ion  vector i s  assumed constant during the  o r b i t a l  plane ro ta -  
t ion ,  it follows t h a t  68 = 6w. Hence, 

d w  d i  - = - ( tan  0 cot  i) - d t  d t  



Subs t i tu t ing  f o r  
ment of perifocus produced by the ro t a t ion  of t he  o r b i t  plane i s  given by 

d i /d t  from equation ( ~ 2 8 ) ,  the rate of change of the  argu- 

dw 
d t  h 

r cot  i s i n  e (2 . F) - =  - 

If the  argument of perifocus i s  measured from the  i n e r t i a l l y  f ixed  x axis, 
then the  rate of 
following sum: 

Subs t i tu t ing  f o r  
r a t e  i s  obtained 

change associated with o r i en ta t ion  changes i s  given by the 

dR d w  - + -  
d t  d t  

dR/dt from equation (B29) i n  equation (B32), the required 
i n  the  following form: 

d R  
d t  d t  

d w  - r s i n  8 t a n [ ( l / 2 ) i ]  (2 . p) 
h 

+ - -  - 

If equations (B32a) and (B23) a re  combined, t he  t o t a l  r a t e  of change of the  
argument of perifocus i s  given by 

A r s i n  (v  + ~ ) t a n [ ( l / z ) i ]  A h}. - P G.E d t  = {- (k cos v) + eh s i n  v(2  + e cos v)e  + h 

The semimajor axis i s  defined as follows: 

L e t  

It i s  known from o r b i t  theory t h a t  f o r  closed o r b i t s ,  the  quant i ty  2a i s  the 
distance from perifocus t o  apofocus. The quant i ty  a i s  the semimajor axis. 
I n  an i d e a l  inverse-square-law cen t r a l  force f i e l d  it remains constant.  How- 
ever,  the force f i e l d  assumed i n  the present study i s  noncentral so t h a t  the  
quant i ty  a must be t r e a t e d  as a var iab le .  From equation ( B 9 ) ,  the  square of 
ve loc i ty  i s  given by 

therefore  
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Different ia t ing equation ( ~ 3 6 )  with respect t o  t i m e  gives the following rate 
of change of a: 

theref ore 

theref ore 

the re f  ore 

- 
Subst i tut ing f o r  v from equation (B9) y ie lds  

A -  _ -  'a - -  *a2 [ ( e  s i n  v)? + (1 + e cos V ) e l  . P 
d t  h 

Perturbing Forces 

Perturbing forces  a r e  assumed t o  be generated by the e a r t h ' s  gravi ty  f i e l d  
and e x t r a t e r r e s t r i a l  g rav i ty  f i e l d s .  Both of these forces  a r e  assumed t o  be 
derivable from known gravi ta t iona l  po ten t ia l  functions.  It i s  f u r t h e r  a s s w d  
t h a t  t h r u s t  forces  are avai lable  t o  introduce control led perturbations.  I n  
t e r m s  of - the grav i ty  gradients and the t h r u s t  forces ,  the perturbing force 
vector P may be expressed as follows: 

- 
= V'Pob + V'Pet + 0339) 

For convenience of reference the r e s u l t s  a re  summarized below: 
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at  = (- (E cos v) + 5 [sin v(2 + e cos v) I ^  e 
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TABLE I.- VELOCITY I N C m N T S  REQUIRFID TO ROTATE THE LUNAR-ORBIT PLANE THROUGH 

a, 
m i l e s  

1600 

1600 

1600 

2200 

2200 

2200 

1' ABOUT THE LINE OF APSIDES 

e 

0.1 

.2 

-3 

.1 

-3 

-5 
- 

~~ Perifocus 

87.4 

96.8 

107 7 

74.5 

91.9 

116.8 
- 

Apofocus - 

71-0 5 

64.6 . 

58.0 

61.0 

49.5 

39.0 
_ _  



500 

400 

300 

20 0 
V 
a, 
In 
\ = 100 

i! 
.. 
c c 

2 0  
V 
c 
>5 

.- 
c 
'E 100 
0 - 
9 

200 

30 0 

400 

- 100 

- 
/3 Thrust direction 
measured from the 

y = Thrust direction 
measured from the 
local horizontal - 

- 

I I I I I I 

80 

60 

40 

20 
[r 
a, 
U .. 

O E  .- 
t 
0 
2 

20 t 
2 

.- 
U 

In 

r 
I- 

40 

60 

- 80 

J 100 
40 80 120 160 200 240 280 320 360- 

500 
0 

True anomaly, deg 

Figure 1.- Velocity increments required t o  make prescribed changes i n  the semimajor axis  of an earth w 
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6 Figure 1.3.- Changes i n  the argument of perilune resu l t ing  from prescribed changes i n  the semimajor axis. 
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Figure 15. - Impulse vector required t o  reduce perilune height by 5.6 miles. 
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Figure 20.-  Notation used i n  appendix B. 
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